5.5 The Fundamental Theorem of Calculus

The following result is considered among the most important result in calculus.

The Fundamental Theorem of Calculus

If $f(x)$ is a continuous function on $[a, b]$ and $F^{\prime}(x)=f(x)$ then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

We call the function $F(x)$ an antiderivative of $f(x)$.

Proof.

Partition the interval $[a, b]$ into n subintervals each of length $\Delta x=\frac{b-a}{n}$ and let $a=x_{0}<x_{1}<\cdots<x_{n}=b$ be the partition points. Applying the Mean Value Theorem on the interval $\left[x_{0}, x_{1}\right]$ we can find a number $x_{0}<c_{1}<x_{1}$ such that

$$
F\left(x_{1}\right)-F\left(x_{0}\right)=F^{\prime}\left(c_{1}\right) \Delta x .
$$

Continuing this process on the remaining intervals we find

$$
\begin{aligned}
& F\left(x_{2}\right)-F\left(x_{1}\right)=F^{\prime}\left(c_{1}\right) \Delta x \\
& \vdots \\
& F\left(x_{n}\right)-F\left(x_{n-1}\right)=F^{\prime}\left(c_{n}\right) \Delta x
\end{aligned}
$$

Adding these equalities we find

$$
F\left(x_{n}\right)-F\left(x_{0}\right)=\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

Letting $n \rightarrow \infty$ to obtain

$$
F(b)-F(a)=\int_{a}^{b} f(x) d x
$$

Example 5.5.1

Use FTC to compute $\int_{1}^{2} 2 x d x$. Use a calculator to find the answer to the integral and compare.

Solution.

Since the derivative of x^{2} is $2 x, F(x)=x^{2}$. Thus, by the FTC we have

$$
\int_{1}^{2} 2 x d x=F(2)-F(1)=4-1=3 .
$$

Using a calculator we find $\int_{1}^{2} 2 x d x=3$

Example 5.5.2

Let $F(t)$ represent a bacteria population which is 5 million at time $t=0$. After t hours, the population is growing at an instantaneous rate of 2^{t} million bacteria per hour. Estimate the total increase in the bacteria population during the first hour, and the population at $t=1$.

Solution.

Since total change is the definite integral of $F^{\prime}(t)=2^{t}$ from $t=0$ to $t=1$, we have

$$
\text { Change in population }=F(1)-F(0)=\int_{0}^{1} 2^{t} d t \approx 1.44 \text { million bacteria. }
$$

Since $F(0)=5$, we find

$$
F(1)=F(0)+\int_{0}^{1} 2^{t} d t \approx 5+1.44=6.44 \text { million. }
$$

If $C(q)$ is the total cost to produce a quantity q of a certain comodity then we can use the Fundamental Theorem of Calculus and compute the total cost of producing b units as follows

$$
C(b)-C(0)=\int_{0}^{b} C^{\prime}(q) d q
$$

or

$$
C(b)=C(0)+\int_{0}^{b} C^{\prime}(q) d q
$$

We call the quantity $\int_{0}^{b} C^{\prime}(q) d q$ the total variable cost

Example 5.5.3

The marginal cost function for a company is given by

$$
C^{\prime}(q)=q^{2}-16 q+70 \text { dollars/unit }
$$

where q is the quantity produced. If $C(0)=500$, find the total cost of producing 20 units. What is the fixed cost and what is the total variable cost for this quantity?

Solution.

We find $C(20)$ as follows:

$$
C(20)=C(0)+\int_{0}^{20} C^{\prime}(q) d q=500+\int_{0}^{20}\left(q^{2}-16 q+70\right) d q
$$

where $C(0)=500$ is the fixed cost.
Using a calculator we find total variable cost to be

$$
\int_{0}^{20}\left(q^{2}-16 q+70\right) d q \approx 866.7
$$

Thus, the total cost of producing 20 units is

$$
C(20) \approx 500+866.7=1366.7
$$

